This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

CYCLIC VOLTAMMETRIC STUDIES OF

TRIS(ALKYLISOCYANIDE)BIS(TERTIARY PHOSPHINE)COBALT(I) COMPLEXES

C. A. L. Becker ${ }^{\text {a }}$; K. R. Barqawi ${ }^{\text {ab }}$
${ }^{a}$ Department of Chemistry, University of Bahrain, Isa Town, Bahrain, Arabian Gulf ${ }^{b}$ Department of Chemistry, Yarmouk University, Irbid, Jordan

To cite this Article Becker, C. A. L. and Barqawi, K. R.(1995) 'CYCLIC VOLTAMMETRIC STUDIES OF TRIS(ALKYLISOCYANIDE)BIS(TERTIARY PHOSPHINE)COBALT(I) COMPLEXES', Journal of Coordination Chemistry, 34: 3, $273-282$
To link to this Article: DOI: 10.1080/00958979508024317
URL: http://dx.doi.org/10.1080/00958979508024317

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CYCLIC VOLTAMMETRIC STUDIES OF TRIS(ALKYLISOCYANIDE)BIS(TERTIARY PHOSPHINE)COBALT(I) COMPLEXES

C.A.L. BECKER* and K.R. BARQAWI ${ }^{1}$
Department of Chemistry, University of Bahrain, P.O. Box 32038, Isa Town, Bahrain, Arabian Gulf

(Received September 19, 1994)

Synthesis and characterization of tris(alkylisocyanide)bis(triarylphosphine)cobalt(I) complexes, $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$, has been extended to include $\mathrm{CNR}=\mathrm{CNCMe}_{3}, \mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-\text { p) }\right)_{3}$, $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3} ; \mathrm{PR}_{3}=\mathrm{PPh}_{3}, \mathrm{CNR}=\mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCH}_{2} \mathrm{Ph}, \mathrm{CNC}_{4} \mathrm{H}_{9}-n$. Reduction of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ did not occur with $\mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}-p\right)_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Solution and solid state structures of the new $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes appear to be distorted disubstituted trigonal bipyramidal examples with the phosphine ligands in axial positions, but the extent of distortion from rigorous $D_{3 h}$ symmetry in solution appears to vary for different complexes. Oxidation potentials, $\mathrm{E}_{1 / 2}$, measured in $\mathrm{CH}_{3} \mathrm{CN}$, for the oxidation of $\mathrm{Co}(\mathrm{I})$ to $\mathrm{Co}(1 \mathrm{I})$, are essentially independent of the RNC ligands, remaining within the narrow range of +0.20 to +0.25 V for $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}, \mathrm{R}=\mathrm{CMe}_{3}, \mathrm{CHMe}_{2}, \mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{C}_{4} \mathrm{H}_{9}-n$. Variation of the tertiary phosphine ligands has a pronounced effect on the $\mathrm{E}_{1 / 2}$ values, which range from +0.03 to +0.75 V , increasing steadily as PR_{3} (in $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$) is varied: $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-n\right)_{3} \approx$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{13}-n\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}<\mathrm{PPh}_{3}<\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3} \approx \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-\right.$ $p)_{3}<\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}$. Trends in $\mathrm{E}_{1 / 2}$ values are better explained in terms of σ-donation than π^{*}-acceptance. The voltammograms are in general quasi-reversible, but the highest $\mathrm{E}_{1 / 2}$ values show irreversible behaviour. It is proposed that the $\mathrm{Co}(\mathrm{I})$ complex, with approximately trigonal bipyramidal structure in solution, is oxidized to the $\mathrm{Co}(\mathrm{II})$ complex, $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$, with a regular trigonal bipyramidal structure.

KEYWORDS: cyclic voltammetry, alkylisocyanides, cobalt(I) complexes, tertiary phosphines

INTRODUCTION

Numerous pentakis(alkylisocyanide)cobalt(I) complexes disubstituted with tertiary phosphine ligands have been synthesized and characterized in recent years. ${ }^{1-5}$ Relatively little cyclic voltammetric data, however, appears to have been reported. Half-wave potentials, $\mathrm{E}_{1 / 2}$ (oxidation), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, have been reported for a number of $\mathrm{Co}(\mathrm{I})$-alkylisocyanide and arylisocyanide complexes substituted with $\mathrm{PPh}_{3}, \mathrm{PMePh}_{2}$, and $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ ligands. ${ }^{2}$ Cyclic voltammetric data have also been reported in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for some $\left[\mathrm{Co}(\mathrm{CNR})_{3} \mathrm{~L}_{2}\right]^{+}$complexes with selected arylisocyanides and $\mathrm{L}=\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2} .{ }^{6}$

[^0]This present work investigates cyclic voltammetric measurements on various tris(alkylisocyanide)bis(tertiary phosphine)cobalt(I) complexes in acetonitrile. New tris(alkylisocyanide) bis(triarylphosphine)cobalt(I) complexes have been synthesized and characterized to further extend the range of reported ${ }^{4,5}$ complexes. The tertiary phosphine ligands now include a wide range of triarylphosphines and trialkylphosphines with both electron-donating and electron-withdrawing substituents, investigated primarily in the $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes. The alkylisocyanide ligands now span the range $\mathrm{R}=\mathrm{CMe}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}, \mathrm{CHMe}_{2}, \mathrm{C}_{6} \mathrm{H}_{11}$, and $\mathrm{CH}_{2} \mathrm{Ph}$; investigated in the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes. In this way a fairly wide range of electron environment about the $\mathrm{Co}(\mathrm{I})$ could be studied.

EXPERIMENTAL

Reagents

$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}, \quad\left[\mathrm{Co}_{2}\left(\mathrm{CNCHMe}_{2}\right)_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} .5 \mathrm{H}_{2} \mathrm{O}$, and $\left[\mathrm{Co}_{2}\right.$ $\left.\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ were prepared from commercial $\mathrm{CNCHMe}, \mathrm{CNCH}_{2} \mathrm{Ph}$ (Strem), and CNCMe_{3} (Fluka) as previously reported. ${ }^{4,7,8}$ Commercial $\mathrm{CNC}_{4} \mathrm{H}_{9}-n$, $\mathrm{CNC}_{6} \mathrm{H}_{11}, \quad \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}, \quad \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3}, \quad \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}, \quad \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \quad$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}-p\right)_{3}$ (Strem) were used without further purification. $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}, \mathrm{CNR}=\mathrm{CNCMe}_{3}, \mathrm{CNCHMe} \mathrm{CN}_{2} ; \mathrm{PR}_{3}=\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}$, $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}, \quad \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}, \quad \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-n\right)_{3}, \quad \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{13}-n\right)_{3}, \quad \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}$, $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$; were prepared as previously reported. ${ }^{4,5}$ Anhydrous diethyl ether was filtered through an alumina column immediately before use. For cyclic voltammetry 5 mM solutions of the compounds were freshly prepared in chromatographic-grade acetonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAH) as the supporting electrolyte.

Instrumentation

IR spectra were recorded on a Perkin-Elmer 1420 infrared spectrophotometer. Solution electronic spectra were recorded on a Shimadzu UV-365 spectrophotometer. Molar conductivities were measured on 0.001 M solutions at $25^{\circ} \mathrm{C}$ using a Crison model 525 conductimeter. C, H and N elemental analyses were performed using a Carlo Erba CHN-O/S elemental analyzer, model 1106. Cyclic voltammetric measurements were performed using a Metrohm VA Scanner E612 and a Metrohm Polarecord E506 with a three electrode compartment cell. The working and auxiliary electrodes were glassy carbon and platinum wire, respectively; the reference electrode employed was a saturated calomel electrode (SCE). The voltammograms were recorded in the potential range -0.2 V to +0.8 V vs (SCE) on a JJ Instruments X-Y recorder, using a sweep rate of $0.1 \mathrm{~V} / \mathrm{s}$. Nitrogen gas was bubbled through each solution for 10 min prior to runs.
$\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\right)_{3}\left\{\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-\mathrm{p}\right)_{3}\right\}_{2} / \mathrm{ClO}_{4}}\right.$
A 200 mg sample of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was dissolved in $2.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and filtered through cotton. This solution was maintained at $0^{\circ} \mathrm{C}$ in an ice bath while $766 \mathrm{mg} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}\left(1: 5 \mathrm{Co}: \mathrm{P}\right.$ mole ratio) dissolved in $1.0 \mathrm{~cm}^{3}$ of
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. Solution colour changed from blue through green to yellow-brown during ligand addition, becoming dark red-orange only as the solution warmed to room temperature. Ether was carefully added dropwise, initial precipitation being observed after addition of $22.5 \mathrm{~cm}^{3}$. A total volume of $35.0 \mathrm{~cm}^{3}$ of ether was added, and the reaction mixture was chilled in ice for 40 min . Pale orange microcrystals were filtered and washed with $1.5 \mathrm{~cm}^{3}$ of ether. Crude product (325 $\mathrm{mg} ; 74 \%$ yield) was dissolved in $6.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and precipitated by dropwise addition of $20.0 \mathrm{~cm}^{3}$ of ether. Yield: $285 \mathrm{mg}(88 \%$ recovery; 65% overall yield). Melting range: $200-208^{\circ} \mathrm{C}$ (dec.); $v(-\mathrm{N} \equiv \mathrm{C}): 2140 \mathrm{w}(\mathrm{sh})$, 2095 vs , $2060 \mathrm{~m}(\mathrm{sh}) \mathrm{cm}^{-1}$ (Nujol). Anal. Calc. for $\mathrm{CoC}_{57} \mathrm{H}_{51} \mathrm{ClF}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}_{2}: \mathrm{C}$, $51.08 ; \mathrm{H}, 3.84 ; \mathrm{N}, 3.14 \%$. Found: C, $51.05 ; \mathrm{H}, 3.84 ; \mathrm{N}, 2.71 \%$.

Analogous syntheses produced the following complexes.
 $v(-\mathrm{N} \equiv \mathrm{C}): 2138 \mathrm{w}(\mathrm{sh}), 2092 \mathrm{vs}, 2065 \mathrm{~m}(\mathrm{sh}, \mathrm{br}) \mathrm{cm}^{-1}$ (Nujol). Anal. Calc. for $\mathrm{CoC}_{51} \mathrm{H}_{51} \mathrm{ClF}_{6} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}_{2} 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 58.16 ; \mathrm{H}, 4.90 ; \mathrm{N}, 3.97 \%$. Found: C, 58.44 ; H, 5.22 ; N, 3.63%.
$\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\right)_{3}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4} . \mathrm{nCH}_{2} \mathrm{Cl}_{2} \text { : melting range: } 170-179^{\circ} \mathrm{C}, ~(1)}\right.$ (dec.); $\quad v\left(-\mathrm{N} \equiv \mathrm{C}\right.$): $2090 \mathrm{~s}, 2057 \mathrm{vs} \mathrm{cm}^{-1} \quad$ (Nujol). Anal. Calc. for $\mathrm{CoC}_{57} \mathrm{H}_{69} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{P}_{2} .1 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $61.43 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.67 \%$. Found: $\mathrm{C}, 61.32 ; \mathrm{H}$, 6.43 ; N, 3.45\%.
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4} \cdot \mathrm{nCH}_{2} \mathrm{Cl}_{2}$: melting range: $138-150^{\circ} \mathrm{C}$ (dec.); $v(-\mathrm{N} \equiv \mathrm{C}): \quad 2142 \mathrm{w}, \quad 2082 \mathrm{vs}(\mathrm{br}) \quad \mathrm{cm}^{-1} \quad$ (Nujol). Anal. Calc. for $\mathrm{CoC}_{60} \mathrm{H}_{51} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{P}_{2} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $69.16 ; \mathrm{H}, 4.97 ; \mathrm{N}, 4.01 \%$. Found: C, $69.07 ; \mathrm{H}$, 5.04 ; N, 4.20%.

$\left[\mathrm{Cof}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{ClO}_{4}\right.$

A solution of $308 \mathrm{mg} \mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ dissolved in $2.0 \mathrm{~cm}^{3}$ of EtOH was filtered through cotton and chilled in ice. Then $350 \mathrm{mg} \mathrm{CNC}_{4} \mathrm{H}_{9}-n$ (neat; $5: 1 \mathrm{RNC}$: Co mole ratio) was added dropwise while the $\mathrm{Co}(\mathrm{II})$ solution was stirred at $0^{\circ} \mathrm{C}$. Solution colour changed from pink to dark blue, but no precipitate formed. Then 1.104 g $\mathrm{PPh}_{3}\left(5: 1 \mathrm{PPh}_{3}\right.$:Co mole ratio) dissolved in $1.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise while the reaction mixture was stirred. Solution colour changed to yellow-green at $0^{\circ} \mathrm{C}$, becoming dark red-brown as the solution was allowed to warm to room temperature. Ether was added carefully, dropwise. Initial precipitation was observed after addition of $25.0 \mathrm{~cm}^{3}$ of ether; a total volume of $35.0 \mathrm{~cm}^{3}$ of ether was added and the solution was chilled in ice for 45 min . Dark orange microcrystals were filtered and washed with $2.0 \mathrm{~cm}^{3}$ of ether ($660 \mathrm{mg} ; 84 \%$ yield). Crude product was dissolved in $1.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and precipitated with dropwise addition of $10.0 \mathrm{~cm}^{3}$ of ether. Yield: 625 mg (95% recovery; 80% overall yield). Melting range: $143-155^{\circ} \mathrm{C}$ (dec.); $v(-\mathrm{N} \equiv \mathrm{C}): 2138 \mathrm{~m}, 2092 \mathrm{vs}, 2088 \mathrm{sh}, 2048 \mathrm{vs}$ cm^{-1} (Nujol). Anal. Calc. for $\mathrm{CoC}_{51} \mathrm{H}_{57} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{P}_{2}: \mathrm{C}, 65.70 ; \mathrm{H}, 6.16 ; \mathrm{N}, 4.51 \%$. Found: C, 66.06; H, 6.34; N, 4.52\%.
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$: melting range: $165-180^{\circ} \mathrm{C}$ (dec.); $v(-\mathrm{N} \equiv \mathrm{C})$: $2137 \mathrm{w}, 2091 \mathrm{sh}, 2071 \mathrm{vs}(\mathrm{br})$, 2044sh cm^{-1} (Nujol). Anal. Calc. for $\mathrm{CoC}_{57} \mathrm{H}_{63} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{P}_{2}: \mathrm{C}, 67.75 ; \mathrm{H}, 6.28 ; \mathrm{N}, 4.16 \%$. Found: C, $67.29 ; \mathrm{H}, 6.20 ; \mathrm{N}$, 3.94%.

RESULTS AND DISCUSSION

Solution properties of the currently reported tris(alkylisocyanide)bis(triarylphosphine) cobalt(I) complexes are summarized in Table 1 ; the oxidation potentials in $\mathrm{CH}_{3} \mathrm{CN}$ for all of the $\mathrm{Co}(\mathrm{I})$ complexes studied are reported in Table 2.

Synthesis and Characterization

$\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes for which the $\mathrm{Co}(\mathrm{II})$ starting material is easily isolable were prepared according to the synthesis for $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3^{-}}-10\right.}\right.\right.$ $\left.\left.p)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$; $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was initially dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, [$\left.\mathrm{CO}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the triarylphosphine was added dropwise in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Addition of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ failed to show reaction; unreacted starting materials were recovered in good yields. The exceedingly large cone angle for this triarylphosphine (i.e., $\left.184^{\circ}\right)^{9}$ may be more effective in preventing reaction than the electron-withdrawing effect of the $-\mathrm{C}_{6} \mathrm{~F}_{5}$ substituents. $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ may simply be too bulky to react with the $\mathrm{Co}(\mathrm{II})$ species before reduction can take place. $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$, which also has a large cone angle but has strongly electron-donating substituents, did not yield crystalline product in reaction with $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, while $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ readily formed $\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}{ }^{4}{ }^{4}$ Addition of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}-p\right)_{3}$ to $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ produced $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \text {, which will be discussed in a }}\right.\right.$ subsequent paper. This Co(II) complex, rather surprisingly, did not show a reduction potential within the voltage range investigated.
$\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes for which the $\mathrm{Co}(\mathrm{II})$ starting material is not easily isolable, i.e. with $\mathrm{CNC}_{6} \mathrm{H}_{11}$ and $\mathrm{CNC}_{4} \mathrm{H}_{9}-n ;{ }^{7}$ were prepared according to the synthesis for $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} .\left[\mathrm{Co}(\mathrm{CNR})_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complexes were prepared in EtOH and reacted in situ with excess triarylphosphine dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. If a $2: 1 \mathrm{PPh}_{3}: \mathrm{Co}$ (II) mole ratio was used and filtration was rapidly achieved, a minor product of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ could be isolated as well as the more soluble $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ major product. This $\mathrm{Co}(\mathrm{II})$ complex, with limited solution stability, will be discussed in a subsequent paper.

Solution and solid state structures of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes appear to be distorted disubstituted trigonal bipyramidal with the phosphine ligands in axial positions. Molar conductivity values in $\mathrm{CH}_{3} \mathrm{CN}$, acetone, and $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (see Table 1) are within the ranges expected for $1: 1$ electrolytes, ${ }^{10}$ and Λ_{M} values in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are similar to those previously obtained for $\mathrm{Co}(\mathrm{I})$ complexes assumed to be dissociated. ${ }^{5,11}$ Most of the electronic spectra (see Table 1) show three, presumably charge transfer, bands. Three, one-electron, symmetry-allowed, $\mathrm{d}_{\pi} \rightarrow \pi^{*}$ transitions involving equatorial CNR ligands are expected for trigonal bipyramidal coordination. ${ }^{12}$ Extra bands in the UV region may reflect reduced symmetry; five $\mathrm{d}_{\pi} \rightarrow \pi^{*}$ (equatorial) charge-transfer bands become allowed under $\mathrm{C}_{2 \mathrm{~V}}$ symmetry.

The $v(-N \equiv C)$ IR pattern observed in these $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes has been well characterized in disubstituted arylisocyanide ${ }^{13}$ and alkylisocyanide ${ }^{4,5}$ five-coordinate complexes of $\mathrm{Co}(\mathrm{I})$. Only one $\mathrm{v}(-\mathrm{N} \equiv \mathrm{C}) \mathrm{IR}$ band (E) should be observed for $D_{3 h}$ trigonal bipyramidal coordination. Three $v(-N \equiv C)$ IR bands $\left(2 A_{1}+B_{2}\right)$ are expected for the $C_{2 v}$ equatorially-distorted, axially-disubstituted trigonal bipyramidal structure suggested for disubstituted pentakis(arylisocyanide)cobalt(I) complexes. ${ }^{14}$ Resolution of at least the lower-energy side band in almost
Table 1 Solution properties of new tris(alkylisocyanide)bis(triarylphosphine)cobalt(I) complexes.

Compound	$v(-N \equiv C)$ infrared ${ }^{\text {a }}$		Electronic spectra ${ }^{\text {b }}$		$\Lambda_{M}{ }^{25^{\circ} \mathrm{C}} \mathrm{C}$
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	
	2091 vs	$\sim 2135 \mathrm{vw}$ (sh)	≈ 340 sh (2700)	≈ 340 sh (2600)	135
	~2050w (sh)	2093vs	$\approx 278 \mathrm{sh}$	$\approx 276 \mathrm{sh}$	127
		$\sim 2050 \mathrm{w}$ (sh)	$269(45,400)$	266 (42,700)	81
			~ 233 (53,500)	231sh (50,200)	54
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	$\sim 2135 \mathrm{vw}$ (sh)	$\sim 2135 \mathrm{vw}$ (sh)	≈ 340 sh (3500)	≈ 340 sh (3400)	134
	2092vs	2092vs	-279sh (32,200)	$\approx 277 \mathrm{sh}$	132
	~2065br (sh)	$\sim 2060 \mathrm{br}$ (sh)	$271(35,800)$	~270sh (35,100)	82
			266 (35,300)	265 (35,500)	61
			-233 (47,900)	$231(45,600)$	
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	2091 vs	2090vs	≈ 340 sh (3400)	$\approx 340 \mathrm{sh}$ (3700)	149
	-2065br,s	$\sim 2065 \mathrm{br}, \mathrm{s}$	~ 280 sh (37,700)	$\approx 280 \mathrm{sh}$	138
			$275(38,100)$	275 (37,400)	85
			$\sim 268 \mathrm{sh}$	-269sh	71
			239 (58,200)	239sh (57,200)	
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	$\sim 2150 \mathrm{w}$ (sh)	$\sim 2135 \mathrm{vw}$ (sh)	$\approx 460 \mathrm{sh}(160)$	≈ 470 sh (120)	150
	2088vs,br	2086vs,br	≈ 340 sh (2600)	≈ 350 sh (2600)	130
	$\approx 2065 \mathrm{vw}(\mathrm{sh})$	$\sim 2050 \mathrm{vw}$ (sh)	272 (35,500)	271 (34,700)	75
	-2025vw (sh)		229 (44,500)	229sh (42,600)	65
$\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	2096vs			≈ 350 sh (3000)	142
		$2098 \mathrm{vs}$	274 (37,600)	$271(33,400)$	135 82
				-224 sh $(42,300)$	82 67
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$	$\underset{2093 \mathrm{vs}}{\sim} \underset{\mathrm{vw}}{\mathrm{2l}} \mathrm{sh})$	$\begin{aligned} & \sim 2140 \mathrm{vw} \text { (sh) } \\ & 2093 \mathrm{vs} \end{aligned}$	$279(29,600)$	$\approx 340 \operatorname{sh}(4000)$	164
				$275(29,500)$	145
				$\approx 228 \operatorname{sh}(42,200)$	85 60
					60

${ }^{\mathrm{a}}$ The values $v(-\mathrm{N} \equiv \mathrm{C})$ are in $\mathrm{cm}^{-1} ; \mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{v}=$ very, $\mathrm{sh}=$ shoulder, $\mathrm{br}=$ broad. ${ }^{\mathrm{b}} \mathrm{The} \lambda_{\text {max }}$ (ε) value is in nm , without Gaussian resolution. ${ }^{c}$ Molar conductivity, $\Lambda_{M}=1000 \mathrm{~L}_{\text {correct }} \mathrm{C}_{\mathrm{M}}{ }^{-1}$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, \mathrm{~L}_{\text {correct }}=\mathrm{L}_{\text {solution }}-\mathrm{L}_{\text {solvent }}$; first value in acetone, second value in $\mathrm{CH}_{3} \mathrm{CN}$, third value in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, fourth value in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 2 Oxidation potentials in volts for tris(alkylisocyanide)bis(tertiaryphosphine)cobalt(I) complexes in acetonitrile solution. Reversible oxidation potentials are designated as $\mathrm{E}_{1 / 2}$ and calculated from ($\left.\mathrm{E}_{\text {forward }}+\mathrm{E}_{\text {reverse }}\right) / 2$.

Compound		$\begin{aligned} & \mathrm{E}_{\text {oxidation }} \\ & \text { (V vS SCE) } \end{aligned}$	$\begin{aligned} & \mathbf{E}_{\mathrm{p}} \text { (forward) - } \\ & \mathbf{E}_{\mathrm{p}} \text { (reverse) } \\ & \text { (in mV) } \end{aligned}$
I		$\mathrm{E}_{1 / 2}=0.03 \mathrm{~V}$	(170)
II		$\mathrm{E}_{1 / 2}=0.07 \mathrm{~V}$	(170)
III		$\mathrm{E}_{1 / 2}=0.08 \mathrm{~V}$	(230)
IV	$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.18 \mathrm{~V}$	(250)
V	$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.20 \mathrm{~V}$	(220)
VI	$\left.\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.24 \mathrm{~V}$	(170)
VII	$\left[\mathrm{Co}(\mathrm{CNCMe} 3)_{3}\left(\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.33 \mathrm{~V}$	(100)
VIII		0.48 V	(Irrev)
IX		0.49 V	(Irrev)
X		0.68 V	(Irrev)
XI		0.75 V	(Irrev)
XII	$\left.\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\right)_{3}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.12 \mathrm{~V}$	(320)
XIII	$\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.20 \mathrm{~V}$	(200)
XIV	$\left[\mathrm{Co}(\mathrm{CNCHMe})_{3} 3\left(\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}_{3}\right\}_{2}\right] \mathrm{ClO}_{4}\right.$	$\mathrm{E}_{1 / 2}=0.30 \mathrm{~V}$	(60)
XV	$\left[\mathrm{Co}(\mathrm{CNCHMe} 2) 3{ }_{3}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$	0.46 V	(Irrev)
XVI	$\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.20 \mathrm{~V}$	(155)
XVII	$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.22 \mathrm{~V}$	(135)
XVIII	$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	$\mathrm{E}_{1 / 2}=0.25 \mathrm{~V}$	(100)

all of the IR spectra supports postulation of deviation from strict $D_{3 h}$ trigonal bipyramidal structure in solution, as well as the expected deviation in the solid state. One consideration that may become significant in later discussion is the following. Although all $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes are assumed to be distorted from rigorous $D_{3 h}$ symmetry, in solution as well as in the solid state, the extent of distortion undoubtedly varies from one complex to another. Again the $v(-N \equiv C)$ IR pattern may be a gauge of the degree of distortion. As the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ more closely approximates regular trigonal bipyramidal structure, the $v(-N \equiv C)$ IR pattern approaches a single band. Thus, $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$, for example, having two relatively strong $v(-N \equiv \mathrm{C})$, would be expected to be more distorted than $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-\right.\right.$ $n)_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{JClO}_{4}$, which shows effectively a single $\mathrm{v}(-\mathrm{N} \equiv \mathrm{C})$.

Cyclic Voltammetry

Oxidation potential values reported in Table 2 are undoubtedly due to the oxidation of $\mathrm{Co}(\mathrm{I})$ to $\mathrm{Co}(\mathrm{II})$, the variation in values and reversibility depending on the electron density around the Co, which in turn is governed by the nature of the surrounding ligands and by the structure and geometry of the complexes. Complexes of the type $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{+}$, as previously discussed, have at least a distorted trigonal bipyramidal structure, with the three alkylisocyanide ligands in equatorial positions and the two tertiary phosphines in axial positions. Regardless of the precise symmetry notations, the actual orbital occupany for the diamagnetic Co(I) must be $\left(\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}\right)^{4}\left(\mathrm{~d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}\right)^{4}$; i.e., totally filled $3 \mathrm{~d}_{\mathrm{x} z}, 3 \mathrm{~d}_{\mathrm{yz}}, 3 \mathrm{~d}_{\mathrm{xy}}, 3 \mathrm{~d}_{\mathrm{x} 2-\mathrm{y} 2}$ orbitals and empty $3 \mathrm{~d}_{3 z 2-\mathrm{r} 2}$. All of the ligands have σ-donating and π^{*}-accepting bonding ability, but the generally accepted ${ }^{15,16}$ order of decreasing $\mathrm{d}_{\pi} \rightarrow \pi^{*}$ electron-accepting ability is
$\mathrm{RNC}>\mathrm{PR}_{3}($ aryl $)>\mathrm{PR}_{3}$ (alkyl). The strong electron-withdrawing effect of the - CN substituent has been observed ${ }^{13}$ to displace $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}$ into the range of triarylphosphine ligands.

Perhaps the most striking observation that can be made from the list of oxidation potentials (Table 2) is that $E_{1 / 2}$ is essentially independent of variation of the RNC ligands as long as constant PR_{3} is maintained. E_{12} values for the complexes VI, XIII, XVI, XVII, XVIII; spanning the range $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}, \mathrm{R}=\mathrm{CMe}_{3}$, $\mathrm{CHMe}_{2}, \mathrm{C}_{4} \mathrm{H}_{9}-n, \mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Ph}$, respectively, are all within the narrow range of 0.20 to 0.25 V ; individual differences may well be within the limits of experimental error. Pairs of $\mathrm{E}_{1 / 2}$ values, for IV, XII; 0.18, 0.12 V ; VI, XIII; 0.24, 0.20 V ; VII, XIV; $0.33,0.30 \mathrm{~V}$; and VIII, XV; $0.48,0.46 \mathrm{~V}$; comparing analogous complexes of CNCMe_{3} and $\mathrm{CNCHMe}{ }_{2}$, are again very similar, although $\mathrm{E}_{1 / 2}$ values for the CNCMe_{3} complexes do always appear slightly higher than values for the corresponding $\mathrm{CNCHMe} \mathrm{C}_{2}$ complex.

Previous work is not definitive in assessing $E_{1 / 2}$ sensitivity to variation in alkylisocyanide ligands. Dart et al. ${ }^{12}$ concluded that a significant variation of $\mathrm{E}_{1 / 2}$ exists in relation to the alkylisocyanides in $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ complexes (in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{E}_{1 / 2}$ increasing in the order $\mathrm{R}=\mathrm{Me}(0.12)<\operatorname{Pr}^{\mathrm{i}}(0.20)<\mathrm{Bu}^{\mathrm{t}}(0.29 \mathrm{~V})$. This is in contrast to their own previous work, ${ }^{17}$ however, and to $\mathrm{E}_{1 / 2}$ values reported ${ }^{18}$ for $\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right], \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; \mathrm{L}=\mathrm{CNCHMe}_{2}, \mathrm{CNCMe}_{3}$; showing very small differences. For $\left[\mathrm{PtL}_{2}(\mathrm{CNR}) \mathrm{Me}\right]^{+}\left(\mathrm{L}=\mathrm{PMePh}_{2}, \mathrm{PMe}_{2} \mathrm{Ph}\right)$ it has been suggested ${ }^{19}$ that the σ-donar strength of CNR is essentially independent of the inductive properties of R ; so variation in $\mathrm{E}_{1 / 2}$ may therefore depend only on the relatively slight differences in π^{*}-accepting ability of the various alkylisocyanides. Alternately, σ-donation from equatorial trigonal bipyramidal positions to paramagnetic $\mathrm{Co}(\mathrm{I})$ may be ineffective in general because the $3 \mathrm{~d}_{\mathrm{xy}}, 3 \mathrm{~d}_{\mathrm{x} 2-\mathrm{y} 2}$ orbitals are filled. In simple Valence Bond theory, empty orbitals on the metal must be available to accommodate σ-donation from the equatorial ligands; $3 \mathrm{~d}_{3 z 2-\mathrm{r} 2}$ has the right symmetry, but insufficient projection in the xy-plane to be used effectively, and $3 \mathrm{~d}_{\mathrm{xy}}, 3 \mathrm{~d}_{\mathrm{x} 2-\mathrm{y} 2}$ are filled, so only 4 s and $4 \mathrm{p}_{\mathrm{x}}, 4 \mathrm{p}_{\mathrm{y}}$ are effectively available. Interactions of these high-energy virtual orbitals on Co(I) may stabilize the σ-bonding (ligand) MO's, but should have little effect on the electron density around Co. However, $3 \mathrm{~d}_{3 \mathrm{z} 2-\mathrm{r} 2}$ will bond effectively with σ-donation from axial ligands. Considering the several interpretations, it may not be surprising that the $\mathrm{E}_{1 / 2}$ values reported do not show definite correlation, or even significant sensitivity, to the alkylisocyanide ligands.

Variation of the tertiary phosphine ligands in the axial positions of $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ has pronounced effect on the $\mathrm{E}_{1 / 2}$ values. Oxidation potentials range from +0.03 V , for $\mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$, to +0.75 V (irreversible), for $\mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}$, and increase steadily as PR_{3} (in $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$, cpds I-XI) is varied: $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-n\right)_{3} \approx \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{13}-n\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}<$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}<\mathrm{PPh}_{3}<\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3} \approx \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3}<$ $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}$. The same trend for $\mathrm{E}_{1 / 2}, \mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ $<\mathrm{PPh}_{3}<\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}<\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}$ is seen in $\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ (cpds XII-XV). As the electron-donating ability of the P atom decreases, the oxidation potential of $\mathrm{Co}(\mathrm{I})$ increases. The $v(-\mathrm{N} \equiv \mathrm{C}) \mathrm{IR}$ data have been used ${ }^{4,5,13}$ to establish relative decreasing $\mathrm{d}_{\pi} \rightarrow \pi^{*}$ accepting ability as $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}<\mathrm{PPh}_{3}$ $\geq \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}>\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}>\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}>\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}>\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-n\right)_{3} \approx$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{13}-n\right)_{3}$. Poor quality IR data somewhat equivocally rank $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}>$
$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3} \approx \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}>\mathrm{PPh}_{3}>\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}>\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ in this present work, which is the intuitively expected order.

The $\mathrm{E}_{1 / 2}$ values (Table 2) and $v(-\mathrm{N} \equiv \mathrm{C}$) IR data are somewhat in contradiction regarding $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$, and $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} . \mathrm{E}_{1 / 2}$ values suggest that $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$ and $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}$ are even stronger π^{*}-accepting (weaker σ donating) and $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$, weaker, than indicated by $\mathrm{v}(-\mathrm{N} \equiv \mathrm{C}) \mathrm{IR}$ data. $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ should be very sterically hindered, due to large cone angle, ${ }^{9}$ and may be out of place for this reason; electronic spectra ${ }^{4}$ suggest π^{*}-accepting ability $\mathrm{P}^{\left(\mathrm{C}_{6} \mathrm{H}_{13}-n\right)_{3}}$ $>\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$, more in accord with $\mathrm{E}_{1 / 2}$ values. Although increased π^{*}-accepting ability/decreased σ-donating ability are usually considered together as one trend, possibly $v(-N \equiv C)$ IR data are more sensitive to the π^{*}-accepting aspect and $E_{1 / 2}$ more dependent on σ-donation. Changes in $v(-N \equiv C)$ should directly reflect increased/decreased electron population in π^{*} orbitals of the $\mathrm{R}-\mathrm{N} \equiv \mathrm{C}$ (i.e. changes in $\mathrm{d}_{\pi} \rightarrow \pi^{*}$ acceptance), but only indirectly respond to changes in σ-donation by RNC, where increased σ-donation should cause a "tightening" of the $\mathrm{C} \equiv \mathrm{N}$ (i.e. increased frequency). In approximately trigonal bipyramidal $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{+}$ both PR_{3} and CNR should be capable of effective $\mathrm{d}_{\pi} \rightarrow \pi^{*}$ acceptance (through filled $3 \mathrm{~d}_{\mathrm{xz}}, 3 \mathrm{~d}_{\mathrm{yz}}$) but only the PR_{3}, in axial positions, should be able to effectively σ-donate electron density to the Co, through the empty $3 \mathrm{~d}_{3 \mathrm{z2} 2 \mathrm{r} 2}$ orbital. Thus the $\mathrm{E}_{1 / 2}$ values are highly sensitive to changes in the σ-donating ability of the PR_{3} ligands, the oxidation potential increasing sharply as the electron-donating ability of P decreases.

Voltammograms representing the oxidation of $\mathrm{Co}(\mathrm{I})$ to $\mathrm{Co}(\mathrm{II})$ were generally reversible or at least quasi-reversible, the separation between forward and reverse peaks being shown in Table 2. Compounds VIII, IX, X, XI, and XV (containing $\left.\mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-p\right)_{3}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p\right)_{3}\right)$, having the strongest electron-withdrawing substituents on P and consequently the highest $\mathrm{E}_{1 / 2}$ values, are definitely irreversible. Representative voltammograms for reversible behaviour $\left(\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}_{\left.\left.\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}\right) \text { and irreversible behaviour }}\right.\right.\right.$ $\left(\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\left\{\mathrm{P}_{\left.\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}\right) \text { are shown in Figure 1. There appears to }}\right.\right.\right.$ be a definite correlation between quasi-reversible/irreversible behaviour and the appearance (shape) of the $v(-N \equiv \mathrm{C})$ IR pattern. Compounds with irreversible voltammograms tend to show at least two reasonably-strong $v(-N \equiv C)$ IR bands, suggesting significant deviation from regular trigonal bipyramidal structure, while compounds showing quasi-reversible behaviour tend to have $v(-N \equiv C)$ IR patterns more closely approximating a single band (expected for rigorous $D_{3 h}$ symmetry). The only $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ complex of this type to be previously characterized, ${ }^{20}\left[\mathrm{Co}(\mathrm{CNCHMe} 2)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, appears to be regular trigonal bipyramidal in solution. A possible explanation for the quasireversible/irreversible behaviour of the voltammograms, then, is that the $\mathrm{Co}(\mathrm{I})$ complex, with a distorted trigonal bipyramidal structure, is oxidized to a $\mathrm{Co}(\mathrm{II})$ complex with a regular trigonal bipyramidal structure in solution. As the solution structure of the $\mathrm{Co}(\mathrm{I})$ complex more closely approximates $D_{3 h}$ symmetry, the voltammogram more closely approaches reversible behaviour. This is an alternative explanation to that of Hanzlik et al., ${ }^{6}$ who suggested that $\mathrm{Co}(\mathrm{I})$, in a regular trigonal bipyramidal structure, is oxidized to $\mathrm{Co}(\mathrm{II})$, in a regular trigonal bipyramidal structure that rapidly undergoes chemical change to a square pyramidal $\left(C_{2 v}\right)$ solution structure.

Figure 1 Cyclic voltammograms of (a) $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}_{\left(\mathrm{CH}_{2}\right.} \mathrm{Ph}_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$, Compound VII, and (b) $\left[\mathrm{Co}(\mathrm{CNCMe} 3)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$, Compound VIII. Solutions are in acetonitrile containing 0.1 M (TBAH) supporting electrolyte, run at $0.1 \mathrm{~V} / \mathrm{s}$ scan rate.

Acknowledgements

The authors wish to thank the University Research Council of the University of Bahrain for support of this research.

References

1. R.B. King and M.S. Saran, Inorg. Chem., 11, 2112 (1972).
2. J.W. Dart, M.K. Lloyd, R. Mason, J.A. McCleverty and J. Williams, J. Chem. Soc., Dalton Trans., 1747 (1973).
3. E. Bordignon, U. Croatto, U. Mazzi and A.A. Orio, Inorg. Chem., 13, 935 (1974).
4. C.A.L. Becker, A. Anisi, G. Myer and J.D. Wright, Inorg. Chim. Acta, 111, 11 (1986).
5. C.A.L. Becker, S.A. Al-Qallaf and J.C. Cooper, Inorg. Chim. Acta, 188, 99 (1991).
6. J. Hanzlik, G. Albertin, E. Bordignon and A.A. Orio, Inorg. Chem., 38, 207 (1980).
7. C.A.L. Becker, J. Coord. Chem., 28, 147 (1993).
8. C.A.L. Becker, Inorg. Chim. Acta, 203, 175 (1993).
9. C.A. Tolman, Chem. Rev., 77, 313 (1977).
10. R.J. Angelici, "Synthesis and Technique in Inorganic Chemistry", (Saunders, Philadelphia, 2nd edn., 1960), App. 1; W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
11. C.A.L. Becker, J. Coord. Chem., 29, 73 (1993).
12. C.A.L. Becker, J. Organomet. Chem., 104, 89 (1976).
13. C.A.L. Becker and N.K. Homsy, Inorg. Chim. Acta, 89, 95 (1984), and refs. therein.
14. C.A.L. Becker and G.C. Papavassiliou, 180th National Meeting of the American Chemical Society, August 1980, Abst. No. 295 (Inorg. Div.).
15. W.D. Horrocks, Jr. and R. Craig-Taylor, Inorg. Chem., 2, 723 (1963).
16. L. Malatesta and F. Bonati, "Isocyanide Complexes of Metals", (John Wiley, New York, 1969), p. 27.
17. J.A. Connor, E.M. Jones, G.K. McEwen, M.K. Lloyd, and J.A. McCleverty, J. Chem. Soc., Dalton Trans., 1246 (1972).
18. M.K. Lloyd, J.A. McCleverty, D.G. Orchard, J.A. Connor, M.B. Hall, I.H. Hillier, E.M. Jones, and G.K. McEwen, J. Chem. Soc., Dalton Trans., 1743 (1973).
19. H.C. Clark, W.J. Cherwinski, and L.E. Manzer, Inorg. Chem., 11, 1511 (1972).
20. C.A.L. Becker, Synth. React. Inorg. Met.-Org. Chem., 22, 99 (1992).

[^0]: ${ }^{1}$ On leave from the Department of Chemistry, Yarmouk University, Irbid, Jordan.

 * Author for correspondence.

