This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

CYCLIC VOLTAMMETRIC STUDIES OF *TRIS*(ALKYLISOCYANIDE)*BIS*(TERTIARY PHOSPHINE)COBALT(I) COMPLEXES

C. A. L. Becker^a; K. R. Barqawi^{ab}

^a Department of Chemistry, University of Bahrain, Isa Town, Bahrain, Arabian Gulf ^b Department of Chemistry, Yarmouk University, Irbid, Jordan

To cite this Article Becker, C. A. L. and Barqawi, K. R.(1995) 'CYCLIC VOLTAMMETRIC STUDIES OF *TRIS*(ALKYLISOCYANIDE)*BIS*(TERTIARY PHOSPHINE)COBALT(I) COMPLEXES', Journal of Coordination Chemistry, 34: 3, 273 – 282

To link to this Article: DOI: 10.1080/00958979508024317 URL: http://dx.doi.org/10.1080/00958979508024317

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1995, Vol 34, pp. 273–282 Reprints available directly from the publisher Photocopying permitted by license only © 1995 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license by Gordon and Breach Science Publishers SA Printed in Malaysia

CYCLIC VOLTAMMETRIC STUDIES OF TRIS(ALKYLISOCYANIDE)BIS(TERTIARY PHOSPHINE)COBALT(I) COMPLEXES

C.A.L. BECKER* and K.R. BARQAWI¹

Department of Chemistry, University of Bahrain, P.O. Box 32038, Isa Town, Bahrain, Arabian Gulf

(Received September 19, 1994)

Synthesis and characterization of *tris*(alkylisocyanide)*bis*(triarylphosphine)cobalt(I) complexes, [Co(CNR)₃(PR₃)₂]C1O₄, has been extended to include CNR = CNCMe₃, PR₃ = P(C₆H₄CF₃-*p*)₃, P(C₆H₄F-*p*)₃, P(C₆H₄Me-*p*)₃; PR₃ = PPh₃, CNR = CNC₆H₁, CNCH₂Ph, CNC₄H₉-*n*. Reduction of [Co(CNCMe₃)₄H₂O](ClO₄)₂ did not occur with PR₃ = P(C₆H₄MMe₂-*p*)₃ and P(C₆F₅)₃. Solution and solid state structures of the new [Co(CNR)₃(PR₃)₂]ClO₄ complexes appear to be distorted disubstituted trigonal bipyramidal examples with the phosphine ligands in axial positions, but the extent of distortion from rigorous D_{3h} symmetry in solution appears to vary for different complexes. Oxidation potentials, E_{1/2}, measured in CH₃CN, for the oxidation of Co(I) to Co(II), are essentially independent of the RNC ligands, remaining within the narrow range of +0.20 to +0.25V for [Co(CNR)₃(PPh₃)₂]ClO₄, R = CMe₃, CHMe₂, C₆H₁₁, CH₂Ph, C₄H₉-*n*. Variation of the tertiary phosphine ligands has a pronounced effect on the E_{1/2} values, which range from +0.03 to +0.75V, increasing steadily as PR₃ (In [Co(CNCM₃)₃(PR₃)₂]ClO₄) is varied: P(C₆H₄Cl-*p*)₃ ~ P(C₆H₄GH₉-*n*)₃ ~ P(C₆H₄CH₉-*p*)₃ < P(C₆H₄CF₃-*p*)₃. Trends in E_{1/2} values are better explained in terms of σ-donation than π*-acceptance. The voltammograms are in general *quasi*-reversible, but the highest E_{1/2} values show irreversible behaviour. It is proposed that the Co(II) complex, with approximately trigonal bipyramidal structure in solution, is oxidized to the Co(II) complex, [Co(CNR)₃(PR₃)₂]²⁺, with a regular trigonal bipyramidal structure.

KEYWORDS: cyclic voltammetry, alkylisocyanides, cobalt(I) complexes, tertiary phosphines

INTRODUCTION

Numerous *pentakis*(alkylisocyanide)cobalt(I) complexes disubstituted with tertiary phosphine ligands have been synthesized and characterized in recent years.¹⁻⁵ Relatively little cyclic voltammetric data, however, appears to have been reported. Half-wave potentials, $E_{1/2}$ (oxidation), in CH₂Cl₂ solution, have been reported for a number of Co(I)-alkylisocyanide and arylisocyanide complexes substituted with PPh₃, PMePh₂, and Ph₂PCH₂CH₂PPh₂ ligands.² Cyclic voltammetric data have also been reported in CH₂Cl₂ for some [Co(CNR)₃L₂]⁺ complexes with selected arylisocyanides and L = P(OCH₃)₃ and P(C₆H₅)(OC₂H₅)₂.⁶

Downloaded At: 16:51 23 January 2011

¹ On leave from the Department of Chemistry, Yarmouk University, Irbid, Jordan.

^{*} Author for correspondence.

This present work investigates cyclic voltammetric measurements on various tris(alkylisocyanide)bis(tertiary phosphine)cobalt(I) complexes in acetonitrile. New tris(alkylisocyanide)bis(triarylphosphine)cobalt(I) complexes have been synthesized and characterized to further extend the range of reported^{4,5} complexes. The tertiary phosphine ligands now include a wide range of triarylphosphines and trialkylphosphines with both electron-donating and electron-withdrawing substituents, investigated primarily in the [Co(CNCMe₃)₃(PR₃)₂]ClO₄ complexes. The alkylisocyanide ligands now span the range R = CMe₃, C₄H₉-n, CHMe₂, C₆H₁₁, and CH₂Ph; investigated in the [Co(CNR)₃(PPh₃)₂]ClO₄ complexes. In this way a fairly wide range of electron environment about the Co(I) could be studied.

EXPERIMENTAL

Reagents

 $[Co(CNCMe_3)_4H_2O](ClO_4)_2,$ $[Co_2(CNCHMe_2)_{10}](ClO_4)_4.5H_2O_1$ and [Co₂ (CNCH₂Ph)₁₀](BF₄)₄.H₂O were prepared from commercial CNCHMe₂, CNCH₂Ph (Strem), and CNCMe₃ (Fluka) as previously reported.^{4,7,8} Commercial CNC₄H_o-n, CNC_6H_{11} , $P(C_6H_4CF_3-p)_3$, $P(C_6H_4F_{-p})_3$, $P(C_6H_4Me_{-p})_3$, $P(C_6F_5)_3$, and $P(C_6H_4NMe_2-p)_3$ (Strem) were used without further purification. $[Co(CNR)_3(PR_3)_2]ClO_4$, CNR = CNCMe₃, CNCHMe₂; PR₃ = PPh₃, P(C₆H₄Cl-*p*)₃, $P(C_6H_4OMe-p)_3$, $P(CH_2Ph)_3$, $P(C_4H_9-n)_3$, $P(C_6H_{13}-n)_3$, $P(CH_2CH_2CN)_3$, P(NMe₂)₃; were prepared as previously reported.^{4,5} Anhydrous diethyl ether was filtered through an alumina column immediately before use. For cyclic voltammetry 5 mM solutions of the compounds were freshly prepared in chromatographic-grade acetonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAH) as the supporting electrolyte.

Instrumentation

IR spectra were recorded on a Perkin-Elmer 1420 infrared spectrophotometer. Solution electronic spectra were recorded on a Shimadzu UV-365 spectrophotometer. Molar conductivities were measured on 0.001 M solutions at 25°C using a Crison model 525 conductimeter. C, H and N elemental analyses were performed using a Carlo Erba CHN-O/S elemental analyzer, model 1106. Cyclic voltammetric measurements were performed using a Metrohm VA Scanner E612 and a Metrohm Polarecord E506 with a three electrode compartment cell. The working and auxiliary electrodes were glassy carbon and platinum wire, respectively; the reference electrode employed was a saturated calomel electrode (SCE). The voltammograms were recorded in the potential range -0.2 V to +0.8 V vs (SCE) on a JJ Instruments X–Y recorder, using a sweep rate of 0.1 V/s. Nitrogen gas was bubbled through each solution for 10 min prior to runs.

$[Co(CNCMe_3)_3 \{P(C_6H_4CF_3-p)_3\}_2]ClO_4$

A 200 mg sample of $[Co(CNCMe_3)_4H_2O](ClO_4)_2$ was dissolved in 2.0 cm³ of CH₃CN and filtered through cotton. This solution was maintained at 0°C in an ice bath while 766 mg $P(C_6H_4CF_3-p)_3$ (1:5 Co:P mole ratio) dissolved in 1.0 cm³ of

CH₂Cl₂ was added dropwise. Solution colour changed from blue through green to yellow-brown during ligand addition, becoming dark red-orange only as the solution warmed to room temperature. Ether was carefully added dropwise, initial precipitation being observed after addition of 22.5 cm³. A total volume of 35.0 cm³ of ether was added, and the reaction mixture was chilled in ice for 40 min. Pale orange microcrystals were filtered and washed with 1.5 cm³ of ether. Crude product (325 mg; 74% yield) was dissolved in 6.0 cm³ of CH₂Cl₂, filtered through cotton, and precipitated by dropwise addition of 20.0 cm³ of ether. Yield: 285 mg (88% recovery; 65% overall yield). Melting range: 200–208°C (dec.); v(-N≡C): 2140w(sh), 2095vs, 2060m(sh) cm⁻¹ (Nujol). Anal. Calc. for CoC₅₇H₅₁ClF₁₈N₃O₄P₂: C, 51.08; H, 3.84; N, 3.14%. Found: C, 51.05; H, 3.84; N, 2.71%.

Analogous syntheses produced the following complexes.

[Co(CNCMe₃)₃{P(C₆H₄F-*p*)₃}₂]ClO₄.nCH₂Cl₂: melting range: 165–177°C (dec.); $v(-N \equiv C)$: 2138w(sh), 2092vs, 2065m(sh,br) cm⁻¹ (Nujol). *Anal.* Calc. for CoC₅₁H₅₁ClF₆N₃O₄P₂0.2CH₂Cl₂: C, 58.16; H, 4.90; N, 3.97%. Found: C, 58.44; H, 5.22; N, 3.63%.

 $[Co(CNCMe_3)_3 \{P(C_6H_4Me-p)_3\}_2]CIO_4.nCH_2Cl_2: melting range: 170-179^{\circ}C (dec.); v(-N=C): 2090s, 2057vs cm^{-1} (Nujol). Anal. Calc. for CoC_{57}H_{69}CIN_3O_4P_2.1.5CH_2Cl_2: C, 61.43; H, 6.34; N, 3.67\%. Found: C, 61.32; H, 6.43; N, 3.45\%.$

[Co(CNCH₂Ph)₃(PPh₃)₂]BF₄.nCH₂Cl₂: melting range: 138–150°C (dec.); $v(-N \equiv C)$: 2142w, 2082vs(br) cm⁻¹ (Nujol). Anal. Calc. for CoC₆₀H₅₁BF₄N₃P₂.0.3CH₂Cl₂: C, 69.16; H, 4.97; N, 4.01%. Found: C, 69.07; H, 5.04; N, 4.20%.

$[Co(CNC_4H_9-n)_3(PPh_3)_2]ClO_4$

A solution of 308 mg Co(ClO₄)₂,6H₂O dissolved in 2.0 cm³ of EtOH was filtered through cotton and chilled in ice. Then 350 mg CNC₄H₉-n (neat; 5:1 RNC:Co mole ratio) was added dropwise while the Co(II) solution was stirred at 0°C. Solution colour changed from pink to dark blue, but no precipitate formed. Then 1.104 g PPh₃ (5:1 PPh₃:Co mole ratio) dissolved in 1.5 cm³ of CH₂Cl₂ was added dropwise while the reaction mixture was stirred. Solution colour changed to vellow-green at 0° C, becoming dark red-brown as the solution was allowed to warm to room temperature. Ether was added carefully, dropwise. Initial precipitation was observed after addition of 25.0 cm³ of ether; a total volume of 35.0 cm³ of ether was added and the solution was chilled in ice for 45 min. Dark orange microcrystals were filtered and washed with 2.0 cm³ of ether (660 mg; 84% yield). Crude product was dissolved in 1.5 cm³ of CH₂Cl₂, filtered through cotton, and precipitated with dropwise addition of 10.0 cm³ of ether. Yield: 625 mg (95% recovery; 80% overall yield). Melting range: 143–155°C (dec.); v(-N≡C): 2138m, 2092vs, 2088sh, 2048vs cm⁻¹ (Nujol). Anal. Calc. for $CoC_{51}H_{57}CIN_3O_4P_2$: C, 65.70; H, 6.16; N, 4.51%. Found: C, 66.06; H, 6.34; N, 4.52%.

 $[Co(CNC_6H_{11})_3(PPh_3)_2]ClO_4$: melting range: 165–180°C (dec.); v(-N=C): 2137w, 2091sh, 2071vs(br), 2044sh cm⁻¹ (Nujol). *Anal.* Calc. for $CoC_{57}H_{63}ClN_3O_4P_2$: C, 67.75; H, 6.28; N, 4.16%. Found: C, 67.29; H, 6.20; N, 3.94%.

RESULTS AND DISCUSSION

Solution properties of the currently reported *tris*(alkylisocyanide)*bis*(triarylphosphine)cobalt(I) complexes are summarized in Table 1; the oxidation potentials in CH₃CN for all of the Co(I) complexes studied are reported in Table 2.

Synthesis and Characterization

 $[Co(CNR)_3(PR_3)_2]ClO_4$ complexes for which the Co(II) starting material is easily isolable were prepared according to the synthesis for $[Co(CNCMe_3)_3(P(C_6H_4CF_3-p)_3)_2]ClO_4$; $[Co(CNCMe_3)_4H_2O](ClO_4)_2$ was initially dissolved in CH₃CN, $[Co_2(CNCH_2Ph)_{10}](BF_4)_4$.H₂O in CH₂Cl₂, and the triarylphosphine was added dropwise in CH₂Cl₂ solution. Addition of $P(C_6F_5)_3$ to $[Co(CNCMe_3)_4H_2O](ClO_4)_2$ failed to show reaction; unreacted starting materials were recovered in good yields. The exceedingly large cone angle for this triarylphosphine (*i.e.*, 184°)⁹ may be more effective in preventing reaction than the electron-withdrawing effect of the $-C_6F_5$ substituents. $P(C_6F_5)_3$ may simply be too bulky to react with the Co(II) species before reduction can take place. $P(NEt_2)_3$, which also has a large cone angle but has strongly electron-donating substituents, did not yield crystalline product in reaction with $[Co(CNCMe_3)_4H_2O](ClO_4)_2$, while $P(NMe_2)_3$ readily formed $[Co(CNCMe_3)_3$ $\{P(NMe_2)_3\}_2]ClO_4$.⁴ Addition of $P(C_6H_4NMe_2-p)_3$ to $[Co(CNCMe_3)_4H_2O](ClO_4)_2$ produced $[Co(CNCMe_3)_3\{P(C_6H_4NMe_2-p)_3)_2](ClO_4)_2$, which will be discussed in a subsequent paper. This Co(II) complex, rather surprisingly, did not show a reduction potential within the voltage range investigated.

 $[Co(CNR)_3(PR_3)_2]ClO_4$ complexes for which the Co(II) starting material is not easily isolable, i.e. with CNC_6H_{11} and CNC_4H_9 -n;⁷ were prepared according to the synthesis for $[Co(CNC_4H_9-n)_3(PPh_3)_2]ClO_4$. $[Co(CNR)_5](ClO_4)_2$ complexes were prepared in EtOH and reacted *in situ* with excess triarylphosphine dissolved in CH_2Cl_2 . If a 2:1 PPh_3:Co(II) mole ratio was used and filtration was rapidly achieved, a minor product of $[Co(CNC_6H_{11})_4(PPh_3)_2](ClO_4)_2$ could be isolated as well as the more soluble $[Co(CNC_6H_{11})_3(PPh_3)_2]ClO_4$ major product. This Co(II) complex, with limited solution stability, will be discussed in a subsequent paper.

Solution and solid state structures of the $[Co(CNR)_3(PR_3)_2]ClO_4$ complexes appear to be distorted disubstituted trigonal bipyramidal with the phosphine ligands in axial positions. Molar conductivity values in CH₃CN, acetone, and CH₃NO₂ (see Table 1) are within the ranges expected for 1:1 electrolytes,¹⁰ and Λ_M values in CH₂Cl₂ are similar to those previously obtained for Co(I) complexes assumed to be dissociated.^{5,11} Most of the electronic spectra (see Table 1) show three, presumably charge transfer, bands. Three, one-electron, symmetry-allowed, $d_{\pi} \rightarrow \pi^*$ transitions involving equatorial CNR ligands are expected for trigonal bipyramidal coordination.¹² Extra bands in the UV region may reflect reduced symmetry; five $d_{\pi} \rightarrow \pi^*$ (equatorial) charge-transfer bands become allowed under C_{2v} symmetry.

The v(-N=C) IR pattern observed in these $[Co(CNR)_3(PR_3)_2]ClO_4$ complexes has been well characterized in disubstituted arylisocyanide¹³ and alkylisocyanide^{4,5} five-coordinate complexes of Co(I). Only one v(-N=C) IR band (E') should be observed for D_{3h} trigonal bipyramidal coordination. Three v(-N=C) IR bands $(2A_1 + B_2)$ are expected for the $C_{2\nu}$ equatorially-distorted, axially-disubstituted trigonal bipyramidal structure suggested for disubstituted *pentakis*(arylisocyanide)cobalt(I) complexes.¹⁴ Resolution of at least the lower-energy side band in almost

complexes.	
Solution properties of new tris(alkylisocyanide) bis(triarylphosphine) cobalt(I)	
Table 1	

Compound	v(-N≡C) infrared	et	Electronic spectra ^b		$\Lambda_{M}^{25 \cdot C_{c}}$
	CH ₂ Cl ₂	CH ₃ NO ₂	CH ₂ Cl ₂	CH ₃ CN	
[Co(CNCMe ₃) ₃ {P(C ₆ H ₄ CF ₃ - <i>p</i>) ₃ } ₂]ClO ₄	2091vs	~2135vw (sh)	≈340sh (2700)	≈340sh (2600)	135
	~2050w (sh)	2093vs	≈278sh	≈276sh	127
		~2050w (sh)	269 (45,400)	266 (42,700)	81
			~233 (53,500)	231sh (50,200)	54
[Co(CNCMe ₃) ₃ {P(C ₆ H ₄ F- <i>p</i>) ₃ }]ClO ₄	~2135vw (sh)	~2135vw (sh)	≈340sh (3500)	≈340sh (3400)	134
	2092vs	2092vs	~279sh (32,200)	≈277sh	132
	~2065br (sh)	~2060br (sh)	271 (35,800)	~270sh (35,100)	82
	~		266 (35,300)	265 (35,500)	61
			~233 (47,900)	231 (45,600)	
[Co(CNCMe ₃) ₃ {P(C ₆ H ₄ Me- <i>p</i>) ₃ }]ClO ₄	2091 vs	2090vs	≈340sh (3400)	≈340sh (3700)	149
	~2065br,s	~2065br,s	~280sh (37,700)	≈280sh	138
	•	ĸ	275 (38,100)	275 (37,400)	85
			~268sh	~269sh	71
			239 (58,200)	239sh (57,200)	
[Co(CNC ₆ H ₁₁) ₃ (PPh ₃) ₂]ClO ₄	~2150w (sh)	~2135vw (sh)	≈460sh (160)	≈470sh (120)	150
	2088vs,br	2086vs,br	≈340sh (2600)	≈350sh (2600)	130
	≈2065vw(sh)	~2050vw (sh)	272 (35,500)	271 (34,700)	75
	~2025vw (sh)		229 (44,500)	229sh (42,600)	65
[Co(CNC4Ho-n)1(PPh1),]CIO4	2096vs	~2145vw (sh)	≈340sh (3900)	≈350sh (3000)	142
		2098vs	274 (37,600)	271 (33,400)	135
				~224sh (42,300)	82
					67
[Co(CNCH,Ph) ₃ (PPh ₃) ₃]BF ₄	~2135vw (sh)	~2140vw (sh)	279 (29,600)	≈340sh (4000)	164
	2093vs	2093vs		275 (29,500)	145
				≈228sh (42,200)	85
					60
^a The values $v(-N=C)$ are in cm ⁻¹ ; s = strong resolution. ^c Molar conductivity, A _M = 100 CH ₂ CN third value in CH ₂ NO, fourth v	g, m = medium, w = we 00 L _{correct} CM ⁻¹ in oh alue in CH ₂ Cl ₂ .	ak, v = very, sh = should m ⁻¹ cm ² mol ⁻¹ , L _{corre}	der, br = broad. ^b The λ _{ma} ct = L _{solution} - L _{solvent} ; firs	 x (ɛ) value is in nm, withc st value in acetone, seco 	ut Gaussian nd value in

CO(I) CYCLIC VOLTAMMETRIC

277

Compound		E _{oxidation} (V vs SCE)	E_p (forward) – E_p (reverse) (in mV)
I	$[Co(CNCMe_3)_3 \{P(NMe_2)_3\}_2]ClO_4$	$E_{1/2} = 0.03V$	(170)
II	$[Co(CNCMe_3)_3 \{P(C_4H_9-n)_3\}_2]ClO_4$	$E_{1/2} = 0.07V$	(170)
III	$[Co(CNCMe_3)_3 \{P(C_6H_{13}-n)_3\}_2]CIO_4$	$E_{1/2} = 0.08V$	(230)
IV	$[Co(CNCMe_3)_3 \{P(C_6H_4OMe-p)_3\}_2]ClO_4$	$E_{1/2} = 0.18V$	(250)
v	$[Co(CNCMe_3)_3 \{P(C_6H_4Me-p)_3\}_2]ClO_4$	$E_{1/2} = 0.20V$	(220)
VI	$[Co(CNCMe_3)_3(PPh_3)_2]ClO_4$	$E_{1/2} = 0.24V$	(170)
VII	$[Co(CNCMe_3)_3 \{P(CH_2Ph)_3\}_2]ClO_4$	$E_{1/2} = 0.33V$	(100)
VIII	$[Co(CNCMe_3)_3[P(C_6H_4Cl-p)_3]_2]ClO_4$	0.48V	(Irrev)
IX	$[Co(CNCMe_3)_3 \{P(C_6H_4F-p)_3\}_2]ClO_4$	0.49V	(Irrev)
Х	$[Co(CNCMe_3)_3 \{P(CH_2CH_2CN)_3\}_2]ClO_4$	0.68V	(Irrev)
XI	$[Co(CNCMe_3)_{3} \{P(C_{6}H_{4}CF_{3}-p)_{3}\}_{2}]ClO_{4}$	0.75V	(Irrev)
XII	$[Co(CNCHMe_2)_3] \{P(C_6H_4OMe_p)_3\}_2] ClO_4$	$E_{1/2} = 0.12V$	(320)
XIII	[Co(CNCHMe ₂) ₃ (PPh ₃) ₂]ClO ₄	$E_{1/2} = 0.20V$	(200)
XIV	$[Co(CNCHMe_2)_3 \{P(CH_2Ph)_3\}_2]ClO_4$	$E_{1/2} = 0.30V$	(60)
XV	$[Co(CNCHMe_2)_3]P(C_6H_4Cl-p)_3]_2]ClO_4$	0.46V	(Irrev)
XVI	$[Co(CNC_4H_9-n)_3(PPh_3)_2]ClO_4$	$E_{1/2} = 0.20V$	(155)
XVII	$[Co(CNC_6H_{11})_3(PPh_3)_2]ClO_4$	$E_{1/2} = 0.22V$	(135)
XVIII	[Co(CNCH ₂ Ph) ₃ (PPh ₃) ₂]ClO ₄	$E_{1/2} = 0.25V$	(100)

Table 2 Oxidation potentials in volts for *tris*(alkylisocyanide)*bis*(tertiaryphosphine)cobalt(I) complexes in acetonitrile solution. Reversible oxidation potentials are designated as $E_{1/2}$ and calculated from $(E_{forward} + E_{reverse})/2$.

all of the IR spectra supports postulation of deviation from strict D_{3h} trigonal bipyramidal structure in solution, as well as the expected deviation in the solid state. One consideration that may become significant in later discussion is the following. Although all $[Co(CNR)_3(PR_3)_2]CIO_4$ complexes are assumed to be distorted from rigorous D_{3h} symmetry, in solution as well as in the solid state, the extent of distortion undoubtedly varies from one complex to another. Again the v(-N=C) IR pattern may be a gauge of the degree of distortion. As the $[Co(CNR)_3(PR_3)_2]CIO_4$ more closely approximates regular trigonal bipyramidal structure, the v(-N=C) IR pattern approaches a single band. Thus, $[Co(CNCMe_3)_3]P(C_6H_4F-p)_3]_2]CIO_4$, for example, having two relatively strong v(-N=C), would be expected to be more distorted than $[Co(CNC_4H_9-n)_3(PPh_3)_2]CIO_4$, which shows effectively a single v(-N=C).

Cyclic Voltammetry

Oxidation potential values reported in Table 2 are undoubtedly due to the oxidation of Co(I) to Co(II), the variation in values and reversibility depending on the electron density around the Co, which in turn is governed by the nature of the surrounding ligands and by the structure and geometry of the complexes. Complexes of the type $[Co(CNR)_3(PR_3)_2]^+$, as previously discussed, have at least a distorted trigonal bipyramidal structure, with the three alkylisocyanide ligands in equatorial positions and the two tertiary phosphines in axial positions. Regardless of the precise symmetry notations, the actual orbital occupany for the diamagnetic Co(I) must be $(d_{xz}, d_{yz})^4(d_{xy}, d_{x2-y2})^4$; *i.e.*, totally filled $3d_{xz}$, $3d_{yz}$, $3d_{xy}$, $3d_{x2-y2}$ orbitals and empty $3d_{3z2-r2}$. All of the ligands have σ -donating and π^* -accepting bonding ability, but the generally accepted^{15,16} order of decreasing $d_{\pi} \rightarrow \pi^*$ electron-accepting ability is

 $RNC > PR_3(aryl) > PR_3(alkyl)$. The strong electron-withdrawing effect of the -CN substituent has been observed¹³ to displace $P(CH_2CH_2CN)_3$ into the range of triarylphosphine ligands.

Perhaps the most striking observation that can be made from the list of oxidation potentials (Table 2) is that $E_{1/2}$ is essentially independent of variation of the RNC ligands as long as constant PR₃ is maintained. E_{12} values for the complexes VI, XIII, XVI, XVII, XVIII; spanning the range [Co(CNR)₃(PPh₃)₂]ClO₄, R = CMe₃, CHMe₂, C₄H₉-*n*, C₆H₁₁, CH₂Ph, respectively, are all within the narrow range of 0.20 to 0.25V; individual differences may well be within the limits of experimental error. Pairs of $E_{1/2}$ values, for IV, XII; 0.18, 0.12V; VI, XIII; 0.24, 0.20V; VII, XIV; 0.33, 0.30V; and VIII, XV; 0.48, 0.46V; comparing analogous complexes of CNCMe₃ and CNCHMe₂, are again very similar, although $E_{1/2}$ values for the corresponding CNCHMe₂ complex.

Previous work is not definitive in assessing $E_{1/2}$ sensitivity to variation in alkylisocyanide ligands. Dart et al.¹² concluded that a significant variation of $E_{1/2}$ exists in relation to the alkylisocyanides in [Co(CNR)₃(PPh₃)₂]PF₆ complexes (in CH_2Cl_2), $E_{1/2}$ increasing in the order R = Me (0.12) < Prⁱ (0.20) < Bu^t (0.29V). This is in contrast to their own previous work,¹⁷ however, and to $E_{1/2}$ values reported¹⁸ for $[M(CO)_4L_2]$, M = Cr, Mo, W; L = CNCHMe₂, CNCMe₃; showing very small differences. For $[PtL_2(CNR)Me]^+$ (L = PMePh₂, PMe₂Ph) it has been suggested¹⁹ that the σ -donar strength of CNR is essentially independent of the inductive properties of R; so variation in $E_{1/2}$ may therefore depend only on the relatively slight differences in π^* -accepting ability of the various alkylisocyanides. Alternately, σ -donation from equatorial trigonal bipyramidal positions to paramagnetic Co(I) may be ineffective in general because the $3d_{xy}$, $3d_{x2-y2}$ orbitals are filled. In simple Valence Bond theory, empty orbitals on the metal must be available to accommodate σ -donation from the equatorial ligands; $3d_{3z^2-r^2}$ has the right symmetry, but insufficient projection in the xy-plane to be used effectively, and $3d_{xy}$, $3d_{x^2-y^2}$ are filled, so only 4s and $4p_x$, $4p_y$ are effectively available. Interactions of these high-energy virtual orbitals on Co(I) may stabilize the σ -bonding (ligand) MO's, but should have little effect on the electron density around Co. However, $3d_{372-r^2}$ will bond effectively with σ -donation from axial ligands. Considering the several interpretations, it may not be surprising that the $E_{1/2}$ values reported do not show definite correlation, or even significant sensitivity, to the alkylisocyanide ligands.

Variation of the tertiary phosphine ligands in the axial positions of $[Co(CNR)_3(PR_3)_2]ClO_4$ has pronounced effect on the $E_{1/2}$ values. Oxidation potentials range from + 0.03V, for PR₃ = P(NMe₂)₃, to + 0.75V (irreversible), for PR₃ = P(C₆H₄CF₃-*p*)₃, and increase steadily as PR₃ (in $[Co(CNCMe_3)_3(PR_3)_2]ClO_4$, cpds I-XI) is varied: P(NMe₂)₃ < P(C₄H₉-*n*)₃ \approx P(C₆H₄Cl-*p*)₃ < P(C₆H₄Me-*p*)₃ < P(C₆H₄Me-*p*)₃ < P(C₆H₄CF₃-*p*)₃. The same trend for $E_{1/2}$, PR₃ = P(C₆H₄OMe-*p*)₃ < P(C₆H₄CF₃-*p*)₃ < P(C₆H₄Cl-*p*)₃ is seen in $[Co(CNCHMe_2)_3(PR_3)_2]ClO_4$ (cpds XII-XV). As the electron-donating ability of the P atom decreases, the oxidation potential of Co(I) increases. The v(-N=C) IR data have been used^{4,5,13} to establish relative decreasing $d_{\pi} \rightarrow \pi^*$ accepting ability as $P(C_6H_4Cl-$ *p* $)_3 < P(C_4H_9-$ *n* $)_3 \approx P(C_6H_13-$ *n* $)_3 > P(C_6H_4Cl-$ *p* $)_3 > P(C_6H_13-$ *n* $)_3 > P(C_6H_4Cl-$ *p* $)_3 > P(C_6H_13-$ *n* $)_3 > P(C_6H_4Cl-$ *p* $)_3 > P(C_6H_13-$ *n* $)_3 > P(C_6H_4CF_3-$ *p* $)_3 > P(C_6H_13-$ *n* $)_3 = P(C_6H_4CF_3-$ *p* $)_3 > P(C_6H_4CF_3-$

 $P(C_6H_4F-p)_3 \approx P(C_6H_4Cl-p)_3 > PPh_3 > P(C_6H_4Me-p)_3 > P(C_6H_4OMe-p)_3$ in this present work, which is the intuitively expected order.

The $E_{1/2}$ values (Table 2) and v(-N=C) IR data are somewhat in contradiction regarding P(CH₂CH₂CN)₃, P(CH₂Ph)₃, and P(NMe₂)₃. E_{1/2} values suggest that $P(CH_2Ph)_3$ and $P(CH_2CH_2CN)_3$ are even stronger π^* -accepting (weaker σ donating) and P(NMe₂)₃, weaker, than indicated by v(-N=C) IR data. P(NMe₂)₃ should be very sterically hindered, due to large cone angle,⁹ and may be out of place for this reason; electronic spectra⁴ suggest π^* -accepting ability P(C₆H₁₃-n)₃ > P(NMe₂)₃, more in accord with $E_{1/2}$ values. Although increased π^* -accepting ability/decreased σ -donating ability are usually considered together as one trend, possibly v(-N=C) IR data are more sensitive to the π^* -accepting aspect and E_{1/2} more dependent on σ -donation. Changes in v(-N=C) should directly reflect increased/decreased electron population in π^* orbitals of the R-N=C (i.e. changes in $d_{\pi} \rightarrow \pi^*$ acceptance), but only indirectly respond to changes in σ -donation by RNC, where increased σ -donation should cause a "tightening" of the C=N (i.e. increased frequency). In approximately trigonal bipyramidal [Co(CNR)₃(PR₃)₂]⁺ both PR₃ and CNR should be capable of effective $d_{\pi} \rightarrow \pi^*$ acceptance (through filled $3d_{xz}$, $3d_{yz}$) but only the PR₃, in axial positions, should be able to effectively σ -donate electron density to the Co, through the empty $3d_{3z^2-r^2}$ orbital. Thus the $E_{1/2}$ values are highly sensitive to changes in the σ -donating ability of the PR₃ ligands, the oxidation potential increasing sharply as the electron-donating ability of P decreases.

Voltammograms representing the oxidation of Co(I) to Co(II) were generally reversible or at least *quasi*-reversible, the separation between forward and reverse peaks being shown in Table 2. Compounds VIII, IX, X, XI, and XV (containing $PR_3 = P(C_6H_4Cl-p)_3$, $P(C_6H_4F-p)_3$, $P(CH_2CH_2CN)_3$, $P(C_6H_4CF_3-p)_3$), having the strongest electron-withdrawing substituents on P and consequently the highest $E_{1/2}$ values, are definitely irreversible. Representative voltammograms for reversible behaviour ($[Co(CNCMe_3)_3{P(CH_2Ph)_3}]ClO_4$) and irreversible behaviour $([Co(CNCMe_3)_3{P(C_6H_4Cl-p)_3}_2]ClO_4)$ are shown in Figure 1. There appears to be a definite correlation between quasi-reversible/irreversible behaviour and the appearance (shape) of the v(-N=C) IR pattern. Compounds with irreversible voltammograms tend to show at least two reasonably-strong v(-N=C) IR bands, suggesting significant deviation from regular trigonal bipyramidal structure, while compounds showing *quasi*-reversible behaviour tend to have v(-N=C) IR patterns more closely approximating a single band (expected for rigorous D_{3h} symmetry). The only $[Co(CNR)_3(PR_3)_2]^{2+}$ complex of this type to be previously characterized,²⁰ [Co(CNCHMe₂)₃{P(C₆H₄OMe-p)₃}₂](ClO₄)₂, appears to be regular trigonal bipyramidal in solution. A possible explanation for the quasireversible/irreversible behaviour of the voltammograms, then, is that the Co(I) complex, with a distorted trigonal bipyramidal structure, is oxidized to a Co(II) complex with a regular trigonal bipyramidal structure in solution. As the solution structure of the Co(I) complex more closely approximates D_{3h} symmetry, the voltammogram more closely approaches reversible behaviour. This is an alternative explanation to that of Hanzlik et al.,⁶ who suggested that Co(I), in a regular trigonal bipyramidal structure, is oxidized to Co(II), in a regular trigonal bipyramidal structure that rapidly undergoes chemical change to a square pyramidal $(C_{2\nu})$ solution structure.

Figure 1 Cyclic voltammograms of (a) $[Co(CNCMe_3)_3{P(CH_2Ph)_3}_2]ClO_4$, Compound VII, and (b) $[Co(CNCMe_3)_3{P(C_6H_4Cl-p)_3}_2]ClO_4$, Compound VIII. Solutions are in acetonitrile containing 0.1 M (TBAH) supporting electrolyte, run at 0.1 V/s scan rate.

Acknowledgements

The authors wish to thank the University Research Council of the University of Bahrain for support of this research.

References

1. R.B. King and M.S. Saran, Inorg. Chem., 11, 2112 (1972).

i

- 2. J.W. Dart, M.K. Lloyd, R. Mason, J.A. McCleverty and J. Williams, J. Chem. Soc., Dalton Trans., 1747 (1973).
- 3. E. Bordignon, U. Croatto, U. Mazzi and A.A. Orio, Inorg. Chem., 13, 935 (1974).
- 4. C.A.L. Becker, A. Anisi, G. Myer and J.D. Wright, Inorg. Chim. Acta, 111, 11 (1986).

- 5. C.A.L. Becker, S.A. Al-Qallaf and J.C. Cooper, Inorg. Chim. Acta, 188, 99 (1991).
- 6. J. Hanzlik, G. Albertin, E. Bordignon and A.A. Orio, Inorg. Chem., 38, 207 (1980).
- 7. C.A.L. Becker, J. Coord. Chem., 28, 147 (1993).
- 8. C.A.L. Becker, Inorg. Chim. Acta, 203, 175 (1993).
- C.A. Tolman, Chem. Rev., 77, 313 (1977).
 R.J. Angelici, "Synthesis and Technique in Inorganic Chemistry", (Saunders, Philadelphia, 2nd edn., 1960), App. 1; W.J. Geary, Coord. Chem. Rev., 7, 81 (1971). 11. C.A.L. Becker, J. Coord. Chem., 29, 73 (1993).
- 12. C.A.L. Becker, J. Organomet. Chem., 104, 89 (1976).
- 13. C.A.L. Becker and N.K. Homsy, Inorg. Chim. Acta, 89, 95 (1984), and refs. therein.
- 14. C.A.L. Becker and G.C. Papavassiliou, 180th National Meeting of the American Chemical Society, August 1980, Abst. No. 295 (Inorg. Div.).
- 15. W.D. Horrocks, Jr. and R. Craig-Taylor, Inorg. Chem., 2, 723 (1963).
- 16. L. Malatesta and F. Bonati, "Isocyanide Complexes of Metals", (John Wiley, New York, 1969), p. 27.
- 17. J.A. Connor, E.M. Jones, G.K. McEwen, M.K. Lloyd, and J.A. McCleverty, J. Chem. Soc., Dalton Trans., 1246 (1972).
- 18. M.K. Lloyd, J.A. McCleverty, D.G. Orchard, J.A. Connor, M.B. Hall, I.H. Hillier, E.M. Jones, and G.K. McEwen, J. Chem. Soc., Dalton Trans., 1743 (1973).
- 19. H.C. Clark, W.J. Cherwinski, and L.E. Manzer, Inorg. Chem., 11, 1511 (1972).
- 20. C.A.L. Becker, Synth. React. Inorg. Met.-Org. Chem., 22, 99 (1992).